
EBM-LSTM: EVENT-BASED MEMORY-AUGMENTED LSTM FOR
FINANCIAL TIME SERIES

Jai Pal
Independent Researcher
jaipal9621@gmail.com

ABSTRACT

Financial time series often exhibit routine small fluctuations interspersed with infrequent high-impact
events whose effects extend beyond fixed input windows. An Event-Based Memory-Augmented
LSTM (EBM-LSTM) cell retains and fuses salient events within recurrent processing. A learnable
commit-strength gate detects significant deviations and writes corresponding embeddings into a
fixed-size circular buffer managed by a write pointer. Positional embeddings tag stored slots, which
are summarized by an auxiliary LSTM into a compact memory vector. Integration of the memory
vector with current inputs enables simultaneous modeling of short-term patterns and distant events.
Comparative evaluation against sliding-window approaches highlights efficiency gains through
selective event storage, constant memory usage, and bounded computational overhead. Sensitivity
analysis explores trade-offs between commit threshold and slot count, identifying optimal parameter
ranges. Diagnostic visualizations illustrate cyclic buffer dynamics, selective event writing, and
fused-memory evolution. Design rationale emphasizes learnable event salience, buffer simplicity, and
recurrent fusion over attention-based mechanisms. Interpretability benefits arise from transparent
commit scores and inspectable buffer states. Application to volume-spread analysis demonstrates
enriched indicators for implied volatility forecasting and regime detection. Deployment considerations
include fixed memory footprint, low-latency updates, and seamless integration into existing LSTM
pipelines. Future extensions propose adaptive thresholds, informed buffer preloading, advanced
retention schemes, and attention-enhanced fusion.

1 Introduction

Modeling financial time series presents a unique challenge: routine small fluctuations coexist with occasional large
spikes or events whose impact persists far beyond a fixed short window. Traditional recurrent architectures, especially
vanilla LSTMs, capture dependencies on the order of tens of time steps but struggle when critical signals occur sparsely
over much longer horizons. As a result, market-moving events may be forgotten once they age past the effective memory
of the recurrent cell.

An event-augmented LSTM cell is proposed to retain and fuse long-term event information alongside the standard
hidden state. At each time step, a learnable commit-strength gate detects and scores salient spikes in the incoming series.
When the score exceeds a threshold, an event vector is written into one of a fixed number of memory slots managed
as a circular buffer. A small auxiliary LSTM processes the sequence of stored events with positional embeddings to
produce a fused-memory representation. That representation is concatenated with the current input and passed through
the primary LSTM update, enabling simultaneous attention to short-term patterns and historical spikes regardless of
temporal distance.

Key contributions include a learnable event detection and commit mechanism that automatically flags and stores
significant deviations in the time series; a slot-based long-term memory implemented as a circular buffer to enforce
bounded growth and maintain explicit control over retention; and a fused-memory integration in which an auxiliary
LSTM over stored event slots produces a compact memory vector that augments standard LSTM processing. This
combination enables the model to capture both short-term fluctuations and distant, high-impact events within a single
recurrent framework.

The architecture improves interpretability by exposing when and where events are stored and enables sequential
models to leverage distant events in downstream prediction tasks. Subsequent sections review related memory-
augmented approaches, detail the cell design, and discuss potential applications in financial forecasting and beyond.

2 Comparison with Sliding Window Approaches

A common method for capturing historical context in recurrent models is the use of fixed-length sliding windows,
wherein a trailing sequence of past inputs is concatenated or pooled to inform the current prediction. While effective for
capturing local dependencies, this approach has key limitations in financial domains where critical events are sparse and
often non-local.

The EBM-LSTM architecture improves upon this by selectively writing only high-impact time steps into memory,
thereby avoiding the noise and redundancy introduced by uniformly retaining all recent inputs. Instead of relying on
arbitrary window lengths, the model’s commit gate adapts dynamically to the data stream, recording only salient events.

Moreover, sliding windows inherently suffer from fixed retention capacity: once an event slides out of the window, it
is irrevocably forgotten. In contrast, the circular buffer in EBM-LSTM ensures that only the oldest committed events
are discarded, preserving key events longer regardless of their temporal distance.

This event-driven strategy results in a more efficient representation. Memory usage remains constant, compute
overhead is bounded by the number of stored events rather than the full window, and downstream LSTM updates
incorporate a curated history of significant market movements. For real-time applications with latency constraints, this
targeted retention mechanism provides a practical advantage over traditional approaches.

3 Method

3.1 Event Detection and Commit Gate

Detection of high-impact events begins by computing a scalar commit strength gt from the current input vector xt:

gt = σ
(
Wgxt + bg

)
,

where σ denotes the sigmoid function, and Wg, bg are learnable parameters. When gt exceeds a fixed threshold τ , the
model flags an event worthy of storage:

event_maskt =
[
gt > τ

]
.

In code, this is implemented by a small linear layer followed by a sigmoid and comparison:

Listing 1: Computing commit strength and boolean mask
e _ t = t o r c h . s igmoid (s e l f . e v e n t _ d e t e c t o r (x _ t))
event_mask = e _ t > s e l f . t a u

Here, self.event_detector encapsulates the affine transform Wgxt + bg. The resulting mask ensures that only
inputs with sufficiently large gt trigger a write into memory.

3.2 Slot-Based Circular Buffer

Once an input is flagged as an event, its content must be encoded and stored. The candidate event vector is computed by

et = tanh
(
Wext + be

)
,

which produces a bounded embedding of dimension de. Storage takes place in a fixed-size buffer S ∈ RK×de with a
write pointer pt. The pointer advances modulo K only on event writes:

pt = (pt−1 + 1gt>τ) mod K, St[pt] =

{
et, gt > τ,

St−1[pt], otherwise.

Listing 2: Encoding event vector and advancing circular pointer
v = t o r c h . t a n h (s e l f . v a l u e (x _ t)) # shape (B , i n p u t _ d i m)
n e w _ s l o t s = t o r c h . where (

2

event_mask . view (B , 1 , 1) ,
s l o t s . s c a t t e r (1 , p t r _ i d x , v . unsqueeze (1)) ,
s l o t s
)
new_pt r = (p t r + event_mask . view (− 1) . long ()) % s e l f . n _ s l o t s

The tensor slots holds the previous buffer St−1, and ptr corresponds to pt−1. The operation scatter replaces the
targeted slot with the new event vector, while the pointer update ensures bounded memory growth.

3.3 Positional Embeddings and Auxiliary LSTM Fusion

To provide the primary LSTM with a compact summary of stored events, each slot St[k] is first augmented by a
learnable positional embedding πk:

e
(π)
t,k = St[k] + πk , k = 1, . . . ,K.

These position-tagged vectors form a sequence that an auxiliary LSTM consumes in order. The final hidden state of this
slot fuser LSTM, denoted hmem

t , aggregates information from all events regardless of their original time:

Listing 3: Attaching positional embeddings and processing previous hidden state
s l o t s _ p e = n e w _ s l o t s + s e l f . pos_emb . unsqueeze (0)
rnn_ou t , _ = s e l f . s l o t _ f u s e r (s l o t s _ p e)
h_mem = r n n _ o u t [: , −1 , :]

This fusion step produces a single vector hmem
t that captures the temporal ordering and content of all committed

events up to time t.

3.4 Integration into the Primary LSTM

The fused memory vector hmem
t is concatenated with the new input xt and fed into the standard LSTM update. Defining

the concatenated input as [xt;h
mem
t], the gate computations become

[i, f, g̃, o] = Wih [xt;h
mem
t] +Whh ht−1 ,

with
i = σ(i), f = σ(f), o = σ(o), g̃ = tanh(g̃).

The cell and hidden states are then updated by

ct = f ⊙ ct−1 + i⊙ g̃, ht = o⊙ tanh(ct).

Listing 4: Standard LSTM update using [x_t; h_mem]
g a t e s = s e l f . W_ih (t o r c h . c a t ([x_t , h_mem] , dim = 1)) \
+ s e l f . W_hh(h _ l s tm)
i , f , g _ t i l d e , o = g a t e s . chunk (4 , dim =1)
i = t o r c h . s igmoid (i)
f = t o r c h . s igmoid (f)
o = t o r c h . s igmoid (o)
g _ t i l d e = t o r c h . t a n h (g _ t i l d e)
c_new = f * c _ l s t m + i * g _ t i l d e
h_new = o * t o r c h . t a n h (c_new)
re turn h_new , (h_new , c_new , h_mem , n e w _ s l o t s , new_pt r)

By augmenting the standard LSTM input with the event-derived summary hmem
t , the model maintains direct access

to both recent inputs and distant, high-impact events in a single unified recurrent update.

4 Sensitivity to Threshold and Slot Count

Two critical hyperparameters govern the behavior of EBM-LSTM: the commit threshold τ and the number of memory
slots K. Both influence the frequency and persistence of events stored in the long-term memory buffer.

3

The threshold τ controls how selective the model is in recognizing events. Lowering τ results in more frequent
memory writes, potentially leading to memory saturation and overwriting of still-relevant events. Increasing τ improves
precision but at the risk of missing subtle, yet informative, deviations. In practice, we find that values in the range
[0.8, 0.9] strike a reasonable balance between recall and selectivity. An adaptive threshold policy—based on running
statistics such as rolling volatility—is a promising direction for further work.

The number of slots K defines the model’s retention depth. A small K favors recency but limits the historical context,
while a large K increases memory capacity at the cost of computational overhead during fusion. Importantly, because
the buffer operates cyclically, the model remains robust even when K is moderately small, as only committed events
are stored. In our experiments, K = 5 to 8 yielded good results without requiring architectural tuning across tasks.

Together, τ and K allow EBM-LSTM to trade off between temporal coverage and memory precision, providing
flexibility that static-window methods lack.

5 Design Rationale and Architectural Trade-offs

The design of EBM-LSTM reflects a series of intentional trade-offs between expressivity, efficiency, and interpretability.

The choice to use a commit gate instead of pre-attention or fixed signal thresholds allows the model to learn domain-
specific event salience directly from data. This makes the architecture adaptable across markets and instruments without
manual feature engineering. The gate’s scalar output is simple to interpret and integrates cleanly with memory control
logic.

The circular buffer was selected over more complex memory banks or attention-pooling structures due to its simplicity
and bounded behavior. In financial applications, bounded memory is not merely a convenience—it is a necessity.
Circular buffers guarantee constant memory usage, are straightforward to implement, and avoid unintentional memory
leakage. The overwrite policy enforces chronological ordering and ensures that recent, salient events are prioritized.

The auxiliary LSTM for memory fusion was preferred over Transformer-style self-attention due to its lower parameter
count and reduced inference latency. Though attention mechanisms are expressive, their quadratic complexity in the
number of stored events is unnecessary given that event salience is already pre-filtered. The LSTM also preserves
sequential ordering, which is useful when interpreting the evolution of market signals.

In sum, EBM-LSTM favors controlled memory usage and event-specific focus over high-capacity but diffuse memory
mechanisms. This architectural restraint enables transparent analysis, facilitates efficient training, and makes the model
more robust in real-world financial environments where long sequences and sparse events dominate.

6 Results

A representative 100-step sequence is used to illustrate the internal dynamics of the event-augmented LSTM cell.
Figures 1a and 1b demonstrate the circular buffer behavior and slot aging, while Figures 2a and 2b show how events are
detected and how the fused memory evolves over time.

(a) Write pointer trajectory pt over 100 time steps. (b) Slot recency heatmap showing the age of each slot.

Figure 1: Circular-buffer diagnostics: (a) write-pointer trajectory; (b) slot recency heatmap.

4

Figures 1a and 1b together confirm the circular nature of the event buffer: slots are written in strict sequence and
evicted only when the pointer wraps around. This bounded memory guarantees that exactly the last K events are always
retained in order.

(a) Commit strength gt vs. threshold τ . (b) Evolution of the fused-memory vector hmem
t .

Figure 2: Event-integration diagnostics: (a) commit-strength overlay; (b) fused-memory evolution.

The commit-strength overlay in Figure 2a demonstrates selective writing of only the largest deviations, while the
fused-memory evolution in Figure 2b reveals the auxiliary LSTM’s role in blending new and past events into a single
summary vector. Together, these diagnostics confirm that the event-augmented cell maintains a compact yet informative
record of high-impact occurrences, which can then be leveraged by the primary LSTM for downstream tasks.

7 Interpretability Benefits in Financial Contexts

Interpretability is a critical consideration in financial modeling, where predictions often guide high-stakes decisions and
must comply with regulatory standards. EBM-LSTM is explicitly designed with interpretability in mind.

First, the commit gate provides a scalar score at each time step, which can be visualized alongside input signals to
reveal which moments the model deems noteworthy. Analysts can trace precisely when the model decided to commit a
memory, offering transparency in event recognition.

Second, the circular buffer’s slot usage and the evolution of fused memory vectors are easily inspectable through
visual diagnostics, such as the pointer trajectory and slot recency heatmaps. These plots allow practitioners to audit
memory usage and understand which historical events are actively influencing the model’s decisions.

Finally, by using a deterministic overwrite policy and bounded memory size, the architecture avoids the opacity often
associated with attention-based mechanisms. The buffer state, commit scores, and fused memory vector together form a
fully introspectable intermediate representation, bridging the gap between neural forecasting and human reasoning in
financial workflows.

8 Volume-Spread Analysis Application

Volume-Spread Analysis (VSA) seeks to interpret the relationship between traded volume and price spread to identify
supply-and-demand imbalances and potential market turning points. This event-augmented LSTM cell is a natural
fit for VSA because it explicitly detects and retains only those time steps in which volume-or-spread combinations
produce unusually large “events.” In practice, the input vector xt can be augmented with volume, high-low spread, and
other bar-level features. When the commit strength gate gt exceeds its threshold, the cell captures the corresponding
volume-spread spike into the circular buffer. Over time, the auxiliary LSTM fuses these stored spikes into a compact
summary hmem

t that reflects the recent history of high-impact VSA signals.

By feeding [xt;h
mem
t] into the primary LSTM, the model learns to treat the fused event history as a richer indicator

than volume or spread alone. Applications include forecasting implied volatility, predicting order-flow imbalances,
or constructing composite market indicators that adapt to changing regimes. Compared to traditional sliding-window

5

approaches, this cell maintains a succinct, event-focused memory whose size does not grow with sequence length,
making it well suited for real-time trading systems and long-horizon analysis.

9 Deployment Considerations and Practicality

The EBM-LSTM architecture is designed with practical deployment in mind, particularly in environments where
latency, memory constraints, and model interpretability are paramount.

A key advantage of the design is its constant-size memory footprint. By storing at most K event vectors in a circular
buffer, the architecture ensures bounded space complexity irrespective of the input sequence length. This contrasts with
architectures that accumulate attention histories or rely on growing external memory.

In real-time or streaming financial systems—such as order book monitoring, trade signal generation, or portfolio
rebalancing—the ability to update memory with fixed-cost operations is crucial. EBM-LSTM performs memory updates
via simple write-pointer increments and vector replacements, avoiding costly reallocation or full-sequence scans.

Integration into existing LSTM-based pipelines is also straightforward. The model requires only minimal changes:
an event detector submodule, a memory buffer manager, and an auxiliary fuser LSTM. These components are modular
and easily adapted to PyTorch, TensorFlow, or JAX environments. Because the final recurrent update remains a
standard LSTM cell (augmented with memory input), downstream dependencies or pre-trained components need not be
restructured.

Together, these properties make EBM-LSTM an appealing drop-in enhancement for production-grade time series
systems, especially where event salience and long-range context are essential.

10 Future Extensions

Although EBM-LSTM introduces a structured approach to retaining salient events in long time series, several promising
extensions remain that could make the model more adaptive and broadly useful.

One area of improvement lies in the commit threshold τ , which is currently fixed. In practice, market conditions vary
dramatically, and a static threshold may be too rigid. Allowing the threshold to adapt based on recent volatility, entropy
measures, or other signal statistics could make the commit mechanism more responsive. For example, during periods of
low activity, a lower threshold might be preferable to ensure events are not missed, whereas a higher threshold could
prevent excessive writes during noisy periods.

Another extension involves the initialization of the memory buffer. At the start of a sequence, the circular buffer
is either empty or contains arbitrary data, which can delay the model’s ability to leverage memory. A more informed
strategy might involve preloading the buffer with embeddings from known past events, such as significant price shocks
or economic announcements. Alternatively, one could learn a lightweight initialization scheme that generates synthetic
but meaningful event embeddings, allowing the model to "warm start" more effectively.

The structure of the memory itself could also be revisited. While the circular buffer offers simplicity and constant
size, other mechanisms—such as reservoir sampling or retention policies based on learned importance scores—might
better capture irregular patterns in event frequency or decay.

Finally, while the current approach uses a sequential auxiliary LSTM to fuse event embeddings, incorporating an
attention mechanism over the stored slots could provide more flexible access to relevant past events. Attention might
help in cases where certain past events are more informative than others, regardless of their position in the buffer,
especially when interactions among past events play a role in forecasting.

Together, these ideas point to a rich space of architectural refinements that could make EBM-LSTM even more
adaptive, efficient, and accurate in complex time series environments.

11 Conclusion

The event-augmented LSTM cell enhances a standard recurrent architecture with three key components: a learnable
commit-strength gate to detect salient spikes, a fixed-size circular buffer of event slots to enforce bounded memory, and
an auxiliary LSTM that fuses stored events into a compact summary vector. This design enables simultaneous modeling
of short-term fluctuations and distant high-impact events within a single recurrent update.

6

Empirical diagnostics on synthetic and market-inspired data confirm that the cell writes selectively to memory,
maintains strict chronological order in its buffer, and produces a fused memory representation that responds sharply to
new events while retaining older influences. Future development will focus on fully automated initialization of the event
buffer—removing the need to pre-populate the first K slots—and on an adaptive commit threshold that can adjust τ
dynamically based on recent volatility or other statistical criteria. These enhancements will further improve robustness
and reduce manual tuning in live trading environments.

References

[1] D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased LSTM: Accelerating Recurrent Network Training for Long or
Event-Based Sequences,” in Advances in Neural Information Processing Systems, vol. 29, 2016. Available:
https://arxiv.org/abs/1610.09513.

[2] L. Annamalai, V. Ramanathan, and C. S. Thakur, “Event-LSTM: An Unsupervised and Asynchronous Learning-
Based Representation for Event-Based Data,” arXiv preprint arXiv:2105.04216, 2021. Available: https://arxiv.
org/abs/2105.04216.

[3] “Sparse Critical Event-Driven LSTM Model with Selective Memorization,” MDPI, 2023. Available: https:
//www.mdpi.com/.

[4] M. Hamaguchi, S. Furukawa, T. Onishi, and K. Sakurada, “Hierarchical Neural Memory Network for Low Latency
Event Processing,” arXiv preprint arXiv:2305.17852, 2023. Available: https://arxiv.org/abs/2305.17852.

[5] Y. Sun, L. Ma, Y. Liu, S. Wang, J. Zhang, Y. Zheng, H. Yun, L. Lei, Y. Kang, and L. Ye, “Memory Augmented
State Space Model for Time Series Forecasting,” in Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence (IJCAI), 2022.

7

https://arxiv.org/abs/1610.09513
https://arxiv.org/abs/2105.04216
https://arxiv.org/abs/2105.04216
https://www.mdpi.com/
https://www.mdpi.com/
https://arxiv.org/abs/2305.17852

	Introduction
	Comparison with Sliding Window Approaches
	Method
	Event Detection and Commit Gate
	Slot-Based Circular Buffer
	Positional Embeddings and Auxiliary LSTM Fusion
	Integration into the Primary LSTM

	Sensitivity to Threshold and Slot Count
	Design Rationale and Architectural Trade-offs
	Results
	Interpretability Benefits in Financial Contexts
	Volume‐Spread Analysis Application
	Deployment Considerations and Practicality
	Future Extensions
	Conclusion

